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1. Warning

Warning 1.1. This paper is a work in progress. Not all of the known results are
stated here, and the known results may not be stated as cleanly as possible. The
reader should keep this in mind at all times. The authors invite suggestions and
corrections to the content of this paper.

2. Cohomology of Moore Spaces for Cyclic Groups

In this short paper, we investigate the cohomology of certain Rep(Z/2)-spaces.
Non-equivariantly, these are Moore spaces for cyclic groups, and so their non-
equivariant cohomology is known. However, since these spaces are constructed
to be Z/2-spaces, we can also consider their RO(Z/2)-graded cohomology, which
turns out to be much more complicated. Let HZ denote the RO(Z/2)-cohomology
ring of a point with coefficients in the constant Mackey functor Z. Then a priori
HZ has many interesting modules. However, only certain classes of HZ-modules
can appear as the cohomology of a Z/2-space.

Fix M to be the Mackey functor Z. Suppose B = Sp,q and we build X from B
by attaching a single (p+ 1, q+ r) cell. The nonequivariant degree of the attaching
map is important for determining the HZ-module structure of the RO(Z/2)-graded
cohomology of X.

Let us first examine the case where r ≤ 0. As a representative case, let r = −4.
Denote by ω the generator of the cohomology of B and ν the generator of the co-

homology of X/B. Then the E1 page of the cellular spectral sequence for RO(Z/2)-
graded cohomology takes the form shown in Figure 1 below.

All differentials, which have bidegree (1,0), are determined by d(ω) and the
H∗,∗(pt; Z)-module structure. Clearly, d(ω) = n · x2ν for some integer n.

By analyzing the HZ-module structure, we see that we must have that
• d(xiω) = nxi+2ν for i ≥ 0,
• d(αω/xj) = 2nxjν for j = 0, 1,
• d(αω/xk) = nαν/xk−2 for k ≥ 2, and
• d(θω) = d(θω/x) = 0.
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(Remember that xα = 2.)
Depending on the parity of n, d(yiω) will be either 0 or x2yiν. In either case,

nothing is yet known about d(θω/xj) for j ≥ 2.
After taking cohomology the spectral sequence collapses and the cohomology of

X is shown in Figure 2.
In this picture, the large solid dots represent either Z/n or Z/2n, as appropriate.

Also, the dotted lines represent piece of the module that may be nonzero, depending
upon the parity of n and the behavior of the differential in the bottom cone.

Let a denote the image of ν in the cohomology of X. Then a is a generator for
Z/2n.

Consider the portion of the forgetful long exact sequence below:

Hp,q−1(X)→ Hp+1,q(X)→ Hp+1
sing(X)→ Hp+1,q−1(X)

According to Figure 2, this sequence is

0→ Z/n→ Hp+1
sing(X)→ 0

Thus, Hp+1
sing(X) = Z/n. In particular, we see that n is the nonequivariant degree

of the attaching map ϕ.
Suppose first that n is even and consider another portion of the forgetful long

exact sequence:

0→ Hp,q−5(X)→ Hp+1,q−4(X)→ Hp+1
sing(X)→ 0

Substituting the groups, this becomes

0→ Z/2→ Z/2n→ Z/n→ 0
If b is the generator of Hp,q−5(X), then we can deduce that yb = na and also

xyb = nxa.
Let us examine the bottom cone further. Suppose that there is a nonzero class

c ∈ Hp−1,q−7(X), i.e. the differential of the E1 page was zero on the bottom cone.
Then we have a forgetful long exact sequence

0→ Hp,q−7(X)→ Hp+1,q−6(X)→ Hp+1
sing(X)→ Hp+1,q−7(X)→ 0

Substituting in the groups yields the exact sequence

0→ Hp,q−7(X)→ Z/n→ Z/n→ Hp+1,q−7(X)→ 0
where the middle map is the forgetful map ψ to singular cohomology. Now, the
first Z/n is generated by αa and since ψ(α) = 2, the middle map is multiplication
by 2. Since n is even, then it must be that Hp,q−7(X) = Hp+1,q−7(X) = Z/2.

The discussion above tells us that since n is even, all of the dotted lines do appear
(as solid lines) in the cohomology. This is shown in Figure 3 below.

Observe that if j : X → X/B is the projection, then j∗(ν) = a, and so j∗(αν) =
αa. Thus, the HZ-module structure is exactly as described in Figure 3.

The general case r ≤ 0 and even is similar to this one, the difference being the
number of values of j for which xja is infinitely divisible by y and the degree in
which a′ appears.

In n is odd, a similar procedure determines that H∗,∗(X) has a HZ-module
structure as described in Figure 4.
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These results are summarized below.

Proposition 2.1. If X is formed by attaching a single (p + 1, q + r)-cell to Sp,q,
r ≤ 0, r is even, and n is the non-equivariant degree of the attaching map of the
new cell, then H∗,∗(X; Z) = An,r[p, q] where An,r[p, q] in the HZ-module described
as follows:

If n is even, then An,r[p, q] ∼= A⊕A′ where
• A is generated as a HZ-module by a in bidegree (p+ 1, q + r)
• a, xa, . . . , x

r−2
2 a all have additive order 2n,

• xi+r/2a has additive order n for all i ≥ 0,
• xiyja are nonzero for all i ≥ 0 and j ≥ 0,
• na, nxa, . . . , nx

r−2
2 a, nαa/2xi, and θa/xi are all infinitely divisible by y

for all i ≥ 0,
• αa/xi is a nonzero additive generator of additive order n for all i ≥ 0,
• θa/xiyj, nαa/2xiyj are nonzero for all i ≥ 0 and j ≥ 0,
• yA is 2-torsion
• A′ ∼= HZ〈a′〉/(2a′, θa′, αa′) where a′ has bidegree (p+ 1, q + 1).

If n is odd, then
• An,r[p, q] is generated by a in bidegree (p+ 1, q + r)
• a, xa, . . . , x

r−2
2 a all have additive order 2n,

• xi+r/2a and αa/xi have additive order n for all i ≥ 0
• xi+r/2ya and θa/xi are zero for all i ≥ 0
• xiyja is nonzero for i = 0, . . . , r−2

2 and for all j ≥ 0
• na, nxa, . . . , nx

r−2
2 a are infinitely divisible by y.

Of course, if r ≤ 0 and odd, the d(ω) = 0 for dimensional reasons.
Let’s begin to look at the case where the attaching map is such that d(ω) is in

the bottom cone of ν. Let’s start with the case where d(ω) = nαν/x`. The case
where ` = 1, is pictured in Figure 5.

Then the differential on the E1 page of the cellular spectral sequence has the
following properties:

• d(x`+iω) = 2nxiν for all i ≥ 01
• d( αxi ν) = 2n α

x`+1 ν for all i ≥ 0
• d(xiω) = n α

x`−i ν for 0 ≤ i ≤ `− 1
• d(xiyjω) = 0 for all i ≥ 0 and j ≥ 1.
• d(θω) = 0.

Taking cohomology yields the module in Figure 6.
Consider the forgetful long exact sequence:

Hp,q−1(X)→ Hp+1,q(X)→ Hp+1
sing(X)→ Hp+1,q−1(X)→ Hp+2,q(X)

Plugging in what we know this becomes the following:

0→ Z/n→ Hp+1
sing(X)→ Z/2→ 0
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Given the non-equivariant cell structure of X, we know that Hp+1
sing(X) must be

cyclic, and so is Z/2n. Thus, the attaching map is of even non-equivariant degree
2n.

The module structure in this case is as described by Figure 6, with one inde-
terminacy. There is an extension problem to solve and in the example shown,
Hp+1,q+1(X) could be either Z/2 ⊕ Z/2 or Z/4. The general case will have many
of these extension problems to solve, depending on the “q-distance” between the
generators.

The final case to consider is when d(ω) hits a copy of Z/2 in the bottom cone
of ν. Explicitly, this is the case where d(ω) = θν/x`yk for some ` and k. This
is illustrated in Figure 7 for the case ` = 1 and k = 1. Recall that since ω has
dimension (p, q), ν must have dimension (p+ k + 1, q + 2`+ k + 3).

Taking cohomology yields Figure 8. In this case there is a small extension prob-
lem to solve. However, Hp+k+1

sing (X) = Z and so the extension of Z by Z/2 must be
Z.

In Figure 8, the element a has degree (p, q + 2` + 2) and b has degree (p + k +
1, q + k+ 1). Since b is not in the image of ·y, b restricts to a generator in singular
cohomology. Thus xib is nonzero for all i. In particular, yk+1a and x`b generate
Hp+k+1,q+2`+k+3(X). Consider the long exact sequence associated to the cofiber
sequence Sp,q ↪→i X �j Sp+k+1,q+2`+k+3. Since i∗(yk+1a) = i∗(x`b) = yk+1x`ω,
exactness implies that j∗(ν) = yk+1a + x`b. Also j∗ is a HZ-module map and so
we have the following:

• j∗( θν
yk+1 ) = θa

• j∗( αν
yk+1 ) = αa

• j∗( θν
x` ) = θb

• j∗(αν
x` ) = αb

It follows that H∗,∗(X) is a free HZ-module with generators a and b.
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Figure 1. Attaching a (p+ 1, q + r)-cell to Sp,q when r ≤ 0.
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Figure 2. Cohomology after attaching a (p+ 1, q+ r)-cell to Sp,q

when r ≤ 0 with a degree n non-equivariant attaching map.
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Figure 3. An,r[p, q] (When r ≤ 0, r is even, and the attaching
map ϕ has nonzero even non-equivariant degree n.)
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Figure 5. d(ω) = nαν/x`, r even, r ≥ 0, and ` = (r − 2)/2
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` = (r − 2)/2)



THE RO(Z/2)-GRADED COHOMOLOGY OF MOORE SPACES FOR CYCLIC GROUPS 11

-�

6

?

ω e��
�
�
�
�
�
�
�
�
�

xω e��
�
�
�
�
�
�
�
�
�

e��
�
�
�
�
�
�
�
�
�

e��
�
�
�
�
�
�
�
�
�

e��
�
�
�
�
�
�
�

e��
�
�
�

αω e
θω r
�
�

�
�

�
�
�

er
�
�

�
e

e��
�
�
�
�
�

ν

e��
�
�
�
�
�

e��
�
�
�e�

eαν
e

θνr
�

�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

er
�

�
�

�
�
�

�
�
�

�
�
�

�
�

�

er
�

�
�

�
�
�

�
�
�

�
�

er
�

�
�

�
�
�

�

er
�

�
�

e

q

Figure 7. d(ω) = θν/x`yk
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Figure 8. d(ω) = θν/x`yk


